Параметрическое представление - определение. Что такое Параметрическое представление
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Параметрическое представление - определение

Параметрическая кривая; Параметрическое представление функции; Параметрическое уравнение; Параметрическое представление кривых
  • Пример параметрической кривой.

Параметрическое представление         

функции, выражение функциональной зависимости между несколькими переменными посредством вспомогательных переменных Параметров. В случае двух переменных х и у зависимость между ними F (х, у) = 0 может быть геометрически истолкована как уравнение некоторой плоской кривой. Любую величину t, определяющую положение точки (х, у) на этой кривой (например, длину дуги, отсчитываемой со знаком + или - от некоторой точки кривой, принятой за начало отсчёта, или момент времени в некотором заданном движении точки, описывающей кривую), можно принять за параметр, в функции которого выразятся х и у:

x = φ(t), у = ψ(t). (*)

Последние функции и дадут П. п. функциональной зависимости между х и у, уравнения (*) называют параметрическими уравнениями соответствующей кривой. Так, для случая зависимости x2 + y2 = 1 имеем П. п. х= cos t, у = sin t (0 ≤ t < 2π) (параметрические уравнения окружности); для случая зависимости х22 = 1 имеем П. п. ; (t ≠ 0) или также х = cosec t, y=ctg t (- π< t < π, t ≠ 0) (параметрические уравнения гиперболы). Если параметр t можно выбрать так, что функции (*) рациональны, то кривую называют уникурсальной (см. Уникурсальная кривая); такой является, например, гипербола. Особенно важно П. п. пространственных кривых, т. е. задание их уравнениями вида: х = φ(t), у = ψ (t), z = χ (t). Так, прямая в пространстве допускает П. п. х = а + mt; у = b + nt; z = с + pt, Винтовая линия - П. п. х = a cos t; у = a sin t; z = ct.

Для случая трёх переменных х, у и z, связанных зависимостью F (x, y, z) = 0 (одну из них, например z, можно рассматривать как неявную функцию двух других), геометрическим образом служит поверхность. Чтобы определить положение точки на ней, нужны два параметра u и υ (например, широта и долгота на поверхности шара), так что П. п. имеет вид: х = φ(u, υ), у = ψ (u, υ); z = χ (u, υ). Например, для зависимости x2+ y2= (z2+1)2 имеем П. п. х = (u2-1) cos υ; у = (u2 + 1) sinυ; z = u. Важнейшими преимуществами П. п. являются: 1) то, что они дают возможность изучать Неявные функции и в тех случаях, когда переход к их явному заданию без посредства параметров затруднителен; 2) то, что здесь удаётся выражать многозначные функции посредством однозначных. Вопросы П. п. изучены особенно хорошо для аналитических функций. П. п. аналитических функций посредством однозначных аналитических функций составляет предмет теории униформизации (См. Униформизация).

Параметрическое представление         
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.
Представление знаний         
Представление знаний — вопрос, возникающий в когнитологии (науке о мышлении) и информатике, а также в исследовании вопросов, связанных с искусственным интеллектом.

Википедия

Параметрическое представление

Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.